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Abstract: Recently, an extended family of power-divergence measures with two parameters was
proposed together with an iterative reconstruction algorithm based on minimization of the divergence
measure as an objective function of the reconstructed images for computed tomography. Numerical
experiments on the reconstruction algorithm illustrated that it has advantages over conventional
iterative methods from noisy measured projections by setting appropriate values of the parameters.
In this paper, we present a novel neural network architecture for determining the most appropriate
parameters depending on the noise level of the projections and the shape of the target image. Through
experiments, we show that the algorithm of the architecture, which has an optimization sub-network
with multiplicative connections rather than additive ones, works well.

Keywords: deep learning; computed tomography; iterative image reconstruction; learned optimization
algorithm

1. Introduction

Computed tomography (CT) can be thought of in terms of a linear inverse problem
wherein one estimates tomographic images from a measured projection and a known
projection operator [1–6]. Although filtered back-projection, which is an analytical method,
is widely used for image reconstruction in medical CT scanners, iterative image recon-
struction [2,5,7–9] better meets modern requirements for practical use. The iterative image
reconstruction method is based on an optimization algorithm and can obtain an image with
relatively few artifacts from noisy projection data. The maximum-likelihood expectation-
maximization (MLEM) algorithm [2], a typical iterative image reconstruction algorithm,
is known to minimize the Kullback–Leibler (KL) divergence [10] of the measured and
forward projections.

Since the objective function of a minimization problem for CT affects the quality
of the reconstructed images, a rational design of the function is essential. Our research
group previously presented a two-parameter extension of the power-divergence measure
(PDM) [11–14], called EPDM, and proposed an iterative image reconstruction method [15]
based on minimization of EPDM as an objective function, i.e., the PDEM algorithm. Note
that, because the KL-divergence is a special case of the EPDM family, PDEM is a natural
extension of MLEM. The PDEM algorithm can produce a high-quality reconstructed im-
age by adjusting the values of the parameters depending on the degree of noise in the
measured projection.

PDEM is derived from a nonlinear differential equation using the dynamical
method [16–21] applied to tomographic inverse problems [22–27], which means that a
discretization of the differential equation by using a first-order expansion of the vector field
leads to an equivalent iterative formula. A theoretical result from the previous study [15] is
that the global stability of an equilibrium corresponding to the desired solution observed
in the continuous-time system is guaranteed by the Lyapunov theorem [28]. Furthermore,
numerical experiments have shown that the appropriate parameters depend on the level
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of projection noise. As a natural conjecture, the appropriate parameters also depend on
the shape of the image to be reconstructed, so one may consider whether it is possible to
develop a method for estimating the parameters from the measured projection.

In recent years, many studies have incorporated deep-learning approaches for parameter
estimation in iterative algorithms [29–35]. The well-known methods of ADMM-Net [32]
and ISTA-Net [34] embed an iterative algorithm into a deep neural network by using the
alternating direction method of multipliers [36] and the iterative shrinkage thresholding
algorithm [37], respectively. Some of these studies have used recurrent neural networks
(RNNs) in which convolutional sub-networks for estimating parameters are used in each
iterative calculation and the iterative calculations are intertwined [29,33]. The complexity of
the networks increases in proportion to the number of iterative calculations, but the risk of the
vanishing gradient problem [38] occurring is low because the calculations are implemented as
residual blocks [39]. The ideas behind this neural network architecture (referred to below as
learned optimization; LO) have been organized by Andrychowicz et al. [40], and LO has been
actively improved in terms of its design, training method, performance, and operation [41–47].
In particular, this technique has been applied to the field of medical imaging, especially the
problem of compressed sensing in magnetic resonance imaging [48–50]. Zhang et al. [51]
used it together with Nesterov’s acceleration [52] to estimate parameters associated with the
regularization term for compensating for a lack of signals.

In this paper, we propose a novel neural-network architecture that estimates the
values of parameters in the PDEM algorithm by using projection data. The proposed
architecture is similar to LO because it has two subsystems for estimating parameters and
iterative operations. Following the naming convention of Andrychowicz et al., we call
these subsystems the optimizer and optimizee, respectively. Unlike conventional LO, the
subsystems are completely separated in our system, and the network architecture is more
straightforward than that of RNNs. The traditional LO estimates parameters by using the
results of each iterative calculation, whereas our architecture uses only projection data.
Nevertheless, the experimental results illustrate that our method works well. Moreover,
the optimizee has a different structure than the traditional optimizee, with multiplicative
rather than additive connections.

2. Problem Description

We assume that the measured projection y ∈ RI
+ in computed tomography is acquired

according to the linear model
y = Ax + δ (1)

where A ∈ RI×J
+ , x ∈ RJ

+, and δ ∈ RI are a projection operator, target image, and noise,
respectively, with R+ denoting the set of nonnegative real numbers. The purpose of
iterative reconstruction is to obtain a high-quality image similar to the target image by
solving an initial value problem consisting of a difference equation or an equivalent iterative
algorithm. Recently, a novel iterative image reconstruction algorithm [15], which is based
on minimization of the EPDM as an objective function of the measured and forward
projections, has been developed:

zj(k + 1) = zj(k) f j(z(k); y, λ) (2)

with

f j(z; y, λ) :=

I

∑
i=1

Aij

(
yi

(Aiz)
α

)γ

I

∑
i=1

Aij

(
Aiz

(Aiz)
α

)γ
(3)

for j = 1, 2, . . . , J and k = 0, 1, 2, . . . , K − 1 with z(0) = x0 ∈ RJ
+, where Ai and Aij

indicate the ith row vector and the element in the ith row and jth column of the matrix
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A, respectively, and γ > 0 and α ≥ 0 are parameters that are collectively referred to as
λ := (γ, α). The PDEM algorithm described in Equation (2) can be rewritten as

z(k + 1) = z(k)� f (z(k); y, λ), (4)

with f := ( f1, f2, . . . , f J)
>, where the symbol � denotes the Hadamard product and the

superscript > stands for the transpose.
The purpose of this paper is to construct a system that estimates the most appropriate

values of λ in the PDEM algorithm from the projection y by using a deep-learning approach.

3. Proposed Method

Our goal is to design a system for estimating an appropriate set of parameters λ from
the projection y by using supervised learning on a deep neural network, described by

Λ : RI
+ → R2 ; y 7→ λ. (5)

Since it is complicated to prepare a large set of appropriate parameters as a teaching
dataset, we chose to use the following network architecture,

Θ(y) := Ω(y, Λ(y)) (6)

where

Ω(y, λ) :=
(

p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
K

)
(x0)

with

p(z) := z� f (z; y, λ)

as illustrated in Figure 1, and convert the neural network’s output into a reconstructed
image. This architecture allows us to use true images or high-quality reconstructed images
as teaching data. The subsystem Ω as an optimizee produces a reconstructed image z(K)
by iterating the formula in Equation (2) K times, as shown in Figure 2. Note that it does
not include any training parameters. The whole system Θ is implemented as a deep
neural network and the training parameters of the subsystem Λ are automatically adjusted
through the backpropagation procedure.

Although the depth of the computational graph of Θ increases in proportion to the
number of iterations K, the optimizee Ω can be considered to be the residual blocks that can
then be configured with multiplicative connections, as shown in Figures 2 and 3, which is
expected to reduce the risk of the vanishing gradient problem occurring. The well-known
residual blocks can be described in terms of a difference equation

wj(k + 1) = wj(k) + gj(k, w(k)), (7)

for j = 1, 2, . . . , J and k = 0, 1, . . ., which is obtained by applying the (additive) Euler
method with a step size of 1 to the differential equation

dvj(t)
dt

= gj(t, v(t)) (8)

with wj(0) = vj(0). On the other hand, applying the multiplicative Euler method [53] to
Equation (8) yields the difference equation

uj(k + 1) = uj(k) exp

(
gj(k, u(k))

uj(k)

)
(9)
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for j = 1, 2, . . . , J and k = 0, 1, . . . with uj(0) = vj(0). Both residual blocks have shortcut
edges that may help reduce the risk of the vanishing gradient problem. Indeed, the system
in Equation (2) can be derived by discretizing the differential equation

dxj(t)
dt

= xj(t) log
(

f j(x(t); y, λ)
)
, (10)

for j = 1, 2, . . . , J and t ≥ 0 with x(0) = x0 by using the multiplicative Euler method. The
differential equation in Equation (10) is guaranteed by the Lyapunov theorem to converge
globally to the desired solution when the algebraic equation in Equation (1) with δ = 0 has
a solution.

y

Λ

Ω x

λ

Figure 1. Structure of the whole network Θ.

p p . . . p x

. . .(y, λ)

z(0) = x0

z(1) z(2) z(K− 1) z(K)

Figure 2. Structure of the optimizee Ω.

z(k)

(y, λ)

f (z(k); y, λ) � z(k + 1)

Figure 3. Structure of block p.

4. Results and Discussion

In this section, we present the results of an experiment on the proposed system using
5000 pairs of input and teaching data generated by numerical simulations. We generated
teaching data in the form of 64× 64-pixel images deformed by changing the attributes
of each oval, i.e., its intensity, size, position, and rotation angle, from the Shepp–Logan
phantom [54] shown in Figure 4a. The attributes were varied in the ratio ranges shown in
Table 1 from that of the base phantom by using uniform random numbers. The MATLAB
(MathWorks, Natick, MA, USA) function phantom [55] generated the images. To avoid
generating extremely large or small ovals that should not be considered, some common
deformation rates were chosen for one attribute in some of the sets of ovals in one phantom.
The input data were projections calculated by Equation (1) by using a common projection
operator A, projection noise δ, and the target image x as the corresponding teaching data.
The projection operator A, represented as a matrix, was simulated on the basis of the Radon
transform assuming parallel projections from 90 directions with 95 detectors, so I = 90× 95
and J = 64× 64. The signal-to-noise ratio (SNR) for each projection was selected so as
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to be uniformly distributed in the range of 20 dB to 50 dB. Figure 5 shows the resulting
experimental histogram of SNRs, while Figure 6 shows samples of learning data generated
by the above procedure.

#1
#2

#3 #4
#5

#6
#7

#8
#9 #10

(a) Phantom (b) Phantom with oval number labels

Figure 4. Base phantom.

Table 1. Deformation ratios from base phantom. Symbol * indicates that the deformation ratio for the
attribute uses a common value for each oval in the same group. See Figure 4b for “oval numbers”.

Group Oval
Numbers Intensity Minor Axis

Length
Major Axis

Length
Horizontal

Position
Vertical
Position

Angle of
Rotation

1 #1, #2 ±10% ±20% * ±15% * ±0% ±0% ±0%
2 #3, #4, #5 ±30% ±30% ±20% ±25% ±25% ±20%
3 #6, #7 ±30% ±50% ±50% ±50% ±50% ±50%
4 #8, #9, #10 ±30% * ±25% * ±25% * ±20% * ±20% * ±50%

20 25 30 35 40 45 50

0

20

40

60

80

100

120

140

160

180

200

SNR [dB]

Fr
eq

ue
nc

y

Figure 5. Histogram of projection SNRs in input data set.

In the experiment, we designed the optimizer Λ to be a simple and typical network
(Figure 7). The batch normalization layer [56] is supposed to stabilize learning, reduce the
initial value dependence of the learning parameters, and speed up learning. The dropout
layer [57] is used to suppress overfitting.

Since the first hidden layer is dense, it requires a massive number of training param-
eters, resulting in a vast computational cost for training. Therefore, designing a more
efficient optimizer Λ is a future challenge.

The parameters γ and α are power exponents, and giving them excessive values makes
the numerical operations unstable. However, in the process of automatically updating
the learning parameters by using the backpropagation procedure, γ and α are given large
values that temporarily exceed the tolerance of a stable calculation . We avoided this
problem by setting an upper limit on the output values of the optimizer Λ.
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We define the activation function of the output layer of Λ to be

h(x1, x2) := 1.8× (sgm(x1), sgm(x2))
>, (11)

where the function sgm is the standard sigmoid function. The coefficient of 1.8 for the
sigmoid function, given as an upper bound for both parameters, is small enough not to
cause numerical instability or affect the parameter estimation.

Image of
true value

(teaching data)

Sinogram of
projection

(input data)

Projection
SNR [dB]

45

48

23

48

39

Figure 6. Samples of learning data.

The learning conditions and hyperparameters were as follows. We used 4000 pairs of
data for training and 1000 pairs different from them for validation. For the optimizee Ω
responsible for image reconstruction, the number of iterations was K = 200 and an initial
value was x0 = (0.5, 0.5, . . . , 0.5)>. Note that the value of the maximum iteration number
K was chosen to ensure a sufficient reconstruction quality and to properly observe the
difference in the convergence characteristics between the PDEM and MLEM algorithms,
as shown in the previous study [15]. The number of epochs and the batch size were
5000 and 64, respectively. We used the squared L2 norm as the loss function. The Adam
algorithm [58] was used to minimize the loss function; its learning rate was set to 10−6.
The learning network was implemented using Python 3.9.7 and TensorFlow 2.8.0.
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y

Dense(32, ReLU)

BatchNormalization

DropOut(0.05)

Dense(16, ReLU)

BatchNormalization

DropOut(0.05)

Dense(2, h)

λ

Figure 7. Structure of optimizer Λ. Dense(n, f ) indicates a dense layer with n nodes and activation
function f : Rn → Rn. DropOut(r) indicates the dropout layer with dropout rate r. ReLU is short
for rectified linear unit function.

4.1. Results of Learning

Here, we present the experimental results of learning and show that the proposed
network successfully learned the optimizer Λ.

Figure 8 shows the values of the loss function at each epoch. At the final epoch (the
6000th), the loss function for the training data shows a decreasing trend, while the one for
the validation data converged, indicating that the learning was sufficient.

0 1000 2000 3000 4000 5000 6000

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

epochs

lo
ss

va
lu

e

Figure 8. Learning curve. Blue and red points are results for training data and validation data, respectively.
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To evaluate the performance of the learned optimizer Λ, we validated it on a test
dataset consisting of data not included in the training and validation datasets. The proper-
ties described below are common to all of the test datasets. We will discuss the results for
five of the test data pairs shown in Figure 9. The first test data item (` = 1) was a pair of a
projection y1 with an SNR of 20 dB and the expected reconstructed image e1. In the second
and third test data pairs (` = 2 and 3), the expected reconstructed images e2 and e3 equaled
e1 but with different Sn Rs of the projection. On the other hand, in the fourth and fifth test
data pairs (` = 4 and 5), the expected reconstructed images e4 and e5 were different from e1

and from each other, but the noise levels of the projections were 20 dB.
Figure 10 plots the evaluation function values

D(`, z) := ‖e` − z‖2 (12)

defined by the L2 norm of the difference between the `th true image e` and reconstructed
image z when using the parameter λ̂` = (γ̂`, α̂`) estimated by the learned model Λ from
the projection y` with ` = 1, 2, . . . , 5. The results for the MLEM algorithm, i.e., the PDEM
algorithm with λ = (1, 1), are displayed for comparison.

`
Image of

e`
Sinogram of

y`
Projection
SNR [dB]

1 20

2 35

3 50

4 20

5 20

Figure 9. Dataset for testing.

For the first test data pair (` = 1), due to the high noise level, the evaluation functions
for both the MLEM and the proposed algorithm, which is the PDEM using the parameter
values λ̂1 = (0.40, 1.05) estimated by the optimizer Λ, do not decrease monotonically but
rather start to increase at different iteration numbers, around k = 50 and 140, respectively.
The proposed method decreases the evaluation function significantly in the last iteration
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compared with that of the MLEM algorithm. This result indicates that the optimizer Λ can
estimate parameter values that, while not optimal, significantly improve image quality. The
results for the second test data pair (` = 2), which has a different noise level than the first
test data pair (` = 1), shows that the proposed method also reduces the evaluation function
compared with the MLEM algorithm, but the difference is slight. We discuss the reason in
the following subsection. The proposed method can significantly reduce the evaluation
function when using the third test data pair (` = 3), which has weak noise. The reason for
this is presumably that the power exponent parameter γ is a value that affects the step size
in the discretization of the continuous dynamical system and that, when the noise is weak,
a relatively large parameter is chosen for fast convergence to a value close to the true one.
In fact, the estimated parameter γ̂3 is 1.64, which is larger than the others. The results for
the fourth and fifth test data pairs (` = 4 and 5), where the projection contains a lot of noise,
show a slight decrease in the value of the evaluation function, contrary to the results for the
first test data pair (` = 1), where the SNRs of the projections are comparable. This result
suggests that the optimal parameters also depend on the shape of the reconstruction target.

0 20 40 60 80 100 120 140 160 180 200

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

k

D
(1

,z
(k
))

(a) ` = 1 and λ̂1 = (0.40, 1.05)

0 20 40 60 80 100 120 140 160 180 200

3

4

5

6

7

8

9

10

k

D
(2

,z
(k
))

(b) ` = 2 and λ̂2 = (1.30, 1.04)

0 20 40 60 80 100 120 140 160 180 200

2

3

4

5

6

7

8

9

10

k

D
(3

,z
(k
))

(c) ` = 3 and λ̂3 = (1.64, 1.10)

Figure 10. Cont.
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(d) ` = 4 and λ̂4 = (0.75, 0.80)

0 20 40 60 80 100 120 140 160 180 200

3
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k

D
(5

,z
(k
))

(e) ` = 5 and λ̂5 = (0.81, 0.64)

Figure 10. Evaluation function values of z(k) with projection y` for any k. Blue and red points are for
parameters λ = λ̂` and (1, 1), respectively.

Figure 11 shows the contour maps of the evaluation function values of the recon-
structed image z(K) for changes in the parameters γ and α according to the projection y`.
On all the test data, the optimizer Λ could estimate parameters that reduce the evaluation
function value more than the MLEM algorithm. In the case of ` = 1 and ` = 3, where sig-
nificant improvements were observed, the region of suitable parameters is located far from
(γ, α) = (1, 1) corresponding to the parameter for MLEM, and the optimizer Λ succeeds in
estimating the values around it. On the other hand, for ` = 2, 4, and 5, where the differences
in the evaluation functions are slight, the optimal parameters are relatively close to (1, 1).
In other words, these cases are problem settings in which the MLEM algorithm can achieve
high performance. Even in such cases, our optimizer can estimate the parameters better
than it can. The previous study suggested the possibility of a rough parameter estimation
by using the noise level. Indeed, the results for ` = 1, 4, and 5 show similar trends in the
contour plots for the same noise level, and the results for ` = 1, 2 and 3 show a significant
change in trend with the noise level. However, the optimal parameter values and contour
maps depend not only on the noise level but also on the shape of the reconstruction target.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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1.8

5

5.5
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6.5

7

7.5

8

8.5

γ

α

(a) ` = 1 and λ̂1 = (0.40, 1.05)

Figure 11. Cont.
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(b) ` = 2 and λ̂2 = (1.30, 1.04)
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(d) ` = 4 and λ̂4 = (0.75, 0.80)
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(e) ` = 5 and λ̂5 = (0.81, 0.64)

Figure 11. Contour map of evaluation function values D(`, z(K)) with projection y` for parameters
γ, α. Blue and red points indicate λ̂` and (1, 1) corresponding to the MLEM algorithm, respectively.

4.2. Application of Estimated Parameters to Reconstruction of Larger Images

Considering larger images and sinograms in practical CT applications, the significant
increase in network size and training cost leads to problems of increased computer memory
and computation time. To avoid these problems, we propose the following solution. First, a
small reconstructed image and the corresponding projection are prepared as training data.
These small-sized data are used to construct the optimizer Λ in a training manner. When
estimating parameters from the original projection numbers, the projection is reduced to the
same size as the training data and input to the optimizer. Then, the estimated parameters
are used to reconstruct the image from the original projection. In this subsection, we verify
the feasibility of this procedure by showing that the estimated parameters can be used to
reconstruct a larger projection than that used for training.

We generated projections y6, y7, . . . , y10, which were magnified versions of projections
y1, y2, . . . , y5. These projections were generated from phantoms e6, e7, . . . , e10 shown in
Figure 12, which were enlargements of e1, e2, . . . , e5. The projection noise level to be applied
was the same as in the previous subsection. The number of projection directions was
increased to 180 so that the inverse problem would not be unduly difficult due to the large
image size 128× 128. In the proposed use case, the parameters are estimated on the basis of
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a smaller projection reduced from the larger projection, but here the procedure is inverted.
That is, the image reconstruction of projection y` for any ` = 6, 7, . . . , 10 uses the parameter
λ`−5 estimated from its smaller version, projection y`−5.

(a) e6, e9, and e10 (b) e7 (c) e8

Figure 12. Phantom images of (a) e6, e9, and e10, (b) e7, and (c) e8 for testing.

Figure 13 plots the values of the evaluation function during reconstruction. The same
trend as in Figure 10 is obtained when the parameters estimated from the reduced projection
are diverted. The contour maps of the parameters shown in Figure 14 are also consistent
with the trend in Figure 11, suggesting that it is possible to use the parameters estimated
from the miniaturized projection. Although developing a method to reduce the size of
the large original projection appropriately is required for actual use, the results show the
possibility of a practical application.

The reconstructed and subtraction images from the true value on the test data ` = 6 and
` = 8 are shown in Figures 15 and 16. The images reconstructed by the MLEM algorithm
and their subtraction images are also shown for comparison. Comparing the reconstructed
images for ` = 6, it can be seen that the images of the proposed method significantly reduce
the overall presence of granular artifacts. In the case of ` = 8, the reproducibility of the
contour area is high, which is why the evaluation function value is smaller than that of the
MLEM algorithm. Thus, the proposed method worked exceptionally well.
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(a) ` = 6 and λ̂1 = (0.40, 1.05)

Figure 13. Cont.
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(b) ` = 7 and λ̂2 = (1.30, 1.04)
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(c) ` = 8 and λ̂3 = (1.64, 1.10)
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(d) ` = 9 and λ̂4 = (0.75, 0.80)
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Figure 13. Evaluation function values of z(k) with projection y` for any k. Blue and red points are for
parameters λ = λ̂`−5 and (1, 1), respectively.
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Figure 14. Contour map of evaluation function values D(`, z(K)) with projection y` for parameters
γ, α. Blue and red points indicate λ̂`−5 and (1, 1) corresponding to the MLEM algorithm, respectively.
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MLEM algorithm Proposed method

Reconstructed
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Figure 15. Images reconstructed from projection y6 by using proposed method with parameter λ̂1

and the MLEM algorithm. Subtraction images display in the range from 0 to 0.3.

MLEM algorithm Proposed method

Reconstructed
image

Subtraction
image

Figure 16. Images reconstructed from projection y8 by using the proposed method with parameter
λ̂3 and the MLEM algorithm. Subtraction images display in the range from 0 to 0.15.

5. Conclusions

We developed a system for estimating appropriate parameters for the projection to
be reconstructed by employing deep learning on the PDEM algorithm, which has two
parameters and is a generalization of various iterative image reconstruction methods. As a
learning network, we proposed a structure that connects the optimizer, i.e., the estimation
model, and the PDEM algorithm. This architecture is less complex than traditional learned
optimization architectures employing RNNs and achieves satisfactory estimations of the
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parameters of the PDEM algorithm. Although, the appropriate parameters depend on the
noise level of the projection and the shape of the phantom, the learned estimation system
can estimate them for any projection.

Furthermore, we showed that an optimizer trained on small projections can estimate
appropriate parameters for image reconstruction of a projection of a practical size, indicat-
ing that the proposed algorithm can be applied to practical problems with larger images
and sinograms. This fact enables us to avoid a considerable increase in training costs when
reconstructing a clinical CT image.
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